

Dynamic Hosts

DOI: 10.1002/ange.201305761

A Molecular Claw: A Dynamic Cavitand Host**

Keith Hermann, Mina Nakhla, Judith Gallucci, Erdin Dalkilic, Arif Dastan, and Jovica D. Badjić*

The design, synthesis, and study of concave molecules with enforced cavities^[1] have, in the last four decades, revealed some benefits of molecular encapsulation.^[2] Cavitands can be used to promote chemical reactions, [3] stabilize reactive intermediates, [4] investigate new forms of stereoisomerism, [5] detect important analytes^[6] and even resolve the solid-state structure of compounds of interest.^[7] The strategy for obtaining a synthetic host consists of employing methods of computational chemistry to design a desired receptor followed by experimental optimization of its synthesis including kinetic/thermodynamic templation,[8] dynamic combinatorial approach, [9] self-assembly [10] or transition-metal catalyzed macrocyclization.[11] Despite many advances, creating a supramolecular receptor/catalyst remains a challenging task requiring time-consuming optimization of both the synthesis and operation. Furthermore, placing functional groups on the inner side of cavitand's concave surface is difficult but essential for improving its function.^[12] Indeed, self-assembled cages with functionalized inner face have been investigated while covalent hosts with such topology remain elusive. [12] The folding of oligomers into three-dimensional globular or rodlike structures^[13] presents an elegant solution to the problem yet there remains uncertainty about the nature of the chemical information embedded in functional oligomers to ensure folding into desired secondary/tertiary structure.^[14]

The action of biological molecules epitomizes the synchronized and cooperative motion of molecules and/or their parts to implement the function. [15] In line with natural systems, [16] synthetic hosts could benefit from dynamic elements of design^[17] yet incorporating such components into artificial structures[18] is far from trivial and at the forefront of supramolecular chemistry.^[19] We have investigated the action of gated molecular baskets[20] while selfassembled, [21] self-folding [22] as well as switchable cavitands [23] were studied by others to add to the milieu of hosts with intriguing dynamic characteristics.^[24]

[*] K. Hermann, M. Nakhla, J. Gallucci, Prof. J. D. Badjić Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue (USA) E-mail: badjic@chemistry.ohio-state.edu E. Dalkilic, Prof. A. Dastan

Ataturk University Faculty of Sciences, Erzurum (Turkey)

[**] This work was financially supported with funds obtained from the Department of Defense, Defense Threat Reduction Agency (HDTRA1-11-1-0042). The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201305761.

Herein, we describe a synthetic method for obtaining internally functionalized and dynamic cavitands of type 1-3 (Figure 1). These hosts are modular, comprising intriguing electronic characteristics, unique topology and remarkable mode of action: there could be interest for using this type of molecules as "claws" for selectively "grabbing" small chemical analytes and reporting on their presence.

The synthesis of $C_{3\nu}$ symmetric $\mathbf{1}_{syn}$ - $\mathbf{2}_{syn}$ was completed following the convergent strategy described in Figure 1 A.^[25] In particular, we investigated the condensation of transient hexaaminobenzene 4 and diketones $\mathbf{5}_{a-c}$ (Figure 1 C). Although hexaaminobenzene 4^[26] decomposes under ambient conditions, this compound can be generated^[27] in situ and used in the synthesis of various derivatives of 1,4,5,8,9,12hexaazatriphenylene (HAT).[28] Furthermore, Paquette and co-workers employed diacid 7[29] in the synthesis of curved hydrocarbons dodecahedrane^[30] and C₁₆-hexaquinacene.^[31] This molecule can now be prepared on large scale^[31] by a domino Diels-Alder reaction of 9,10-dihydrofulvalene and dimethyl acetylenedicarboxylate (DMAD, Figure 1A). Importantly, compound 7 can be converted into 5_{a-c}, which is unstable and undergoes decomposition at room temperature.

In the Schiff base condensation of 4 and 5_{a-c}, combined in an approximate 1:3 stoichiometric ratio and at a low temperature, we observed the formation of both syn and anti diastereomers of 1-3 isolated in overall 7-55% yield (Figure 1 C); note that the yield was estimated since the unstable reactants ought to be generated in situ. The proportion of diastereomers was, in these reactions, expected to correlate with solvent polarity^[32] and the size of appended alkyl groups in $\mathbf{5}_{a-c}$. That is to say, more polar solvents ought to facilitate the formation of compact $\mathbf{1}_{syn}$ - $\mathbf{3}_{syn}$ stereoisomers, as assisted by the hydrophobic effect, [32] while more sizeable alkyl groups in $\mathbf{5}_{\text{a-c}}$ should favor the formation of $\mathbf{1}_{\text{anti}}$ - $\mathbf{3}_{\text{anti}}$ stereoisomers, as a result of the steric strain. In line with such reasoning, the greatest quantity of desired syn compound formed in the case of 2 in $CH_3OH/H_2O = 8:2$ (Figure 1 C). We deduce that the propyl chains are in 5_b long enough to permit favorable desolvation of the syn transition state and at the same time short enough to avoid adverse interactions, that is, van der Waals strain in the course of forming 2_{syn} versus 2_{anti} . When this same reaction was run with neat CH₃OH, we only isolated trace quantities of 2_{syn} , suggesting an important role of the hydrophobic effect in controlling the outcome of the condensation.

The ${}^{1}\text{H NMR}$ spectrum of $\mathbf{2}_{syn}$ (400 MHz, 298 K) in CD_2Cl_2 revealed a set of signals corresponding to a $C_{3\nu}$ symmetric molecule (Figure 2A); with the assistance of ¹H– ¹H COSY/NOESY spectroscopic methods, we assigned all of the proton resonance signals (Figure S23-24). After plac-

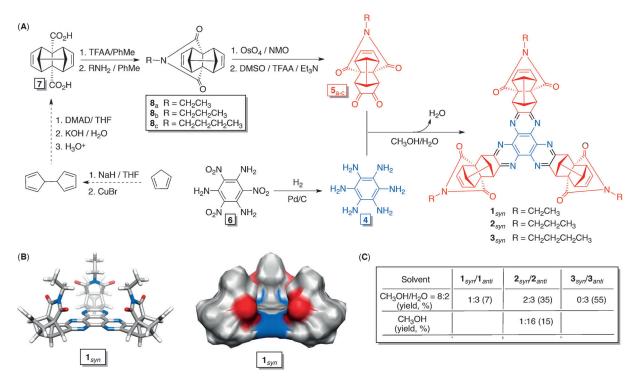
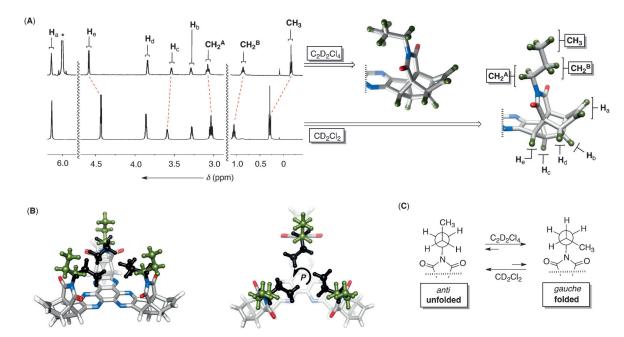
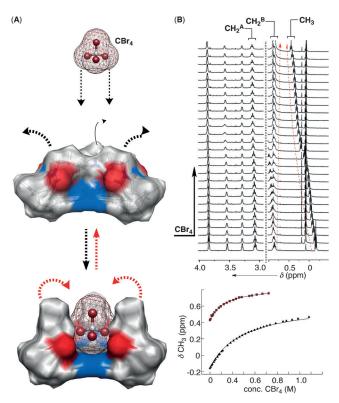



Figure 1. A) The preparation of $C_{3\nu}$ symmetric 1_{sym} - 3_{sym} can be completed on a large scale using simple starting materials and a convergent synthetic strategy. B) Energy-minimized structure of 1_{sym} (MMFFs, Spartan) and van der Waals surface of this molecule showing its cavity ($V=123 \text{ Å}^3$); gray C, red O, blue N. C) The condensation of hexaaminobenzene 4 (in CH₃OH/H₂O) and diketone $\mathbf{5}_{a-c}$ (in CH₂Cl₂) gives syn and anti diastereomers of $\mathbf{1}$ - $\mathbf{3}$ in different ratios (yields are of isolated products).

Figure 2. A) 1 H NMR spectra (400 MHz, 298.0 K) of $\mathbf{2}_{syn}$ in $C_2D_2Cl_4$ (top) and CD_2Cl_2 (bottom). B) Side and top views of energy-minimized structures of $\mathbf{2}_{syn}$ (MMFFs, Spartan) with propyl chains assuming *anti* (green) and *gauche* (black) conformation about C_1 – C_2 sigma bond. C) Newman projections of *anti/gauche* conformers of $\mathbf{2}_{syn}$ in dynamic equilibrium.

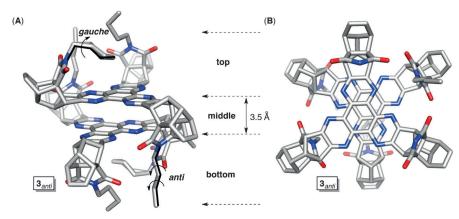
ing host $\mathbf{2}_{syn}$ in $C_2D_2Cl_4$, the signal corresponding to CH_3 group underwent a considerable upfield shift ($\Delta\delta=-0.39$ ppm, Figure 2 A). In addition, the resonances of CH_2^A ($\Delta\delta=+0.28$ ppm), CH_2^B ($\Delta\delta=-0.15$ ppm), H_e ($\Delta\delta=+0.18$ ppm), and H_e ($\Delta\delta=-0.03$ ppm) protons altered as well. To account


for the observation, we first realized that changing the nature of bulk solvent caused the perturbation of protons adjacent to the aromatic "floor". While the polarity of dichloromethane $(\epsilon_{\rho}\!=\!9.1)$ and tetrachloroethane $(\epsilon_{\rho}\!=\!8.4)$ is comparable, the size difference between these two solvents is considerable.

Presumably, smaller molecules of CD₂Cl₂ (61 Å³, Spartan) could fill the pocket in $\mathbf{2}_{syn}$ (190 Å³)^[33] and push the propyl chains to extend out and adopt anti conformation (Figure 2B/ C). On the contrary, sizeable $C_2D_2Cl_4$ (108 Å³, Spartan) could not effectively solvate the interior of $\mathbf{2}_{syn}$ to drive the propyl chains to assume less stable gauche conformation and thereby coil into the host's cavity (Figure 2 B/C). [34] In line with the mechanistic scenario, CH₃ and CH₂^B groups pivot about the cavitand to reside a) on top of the central HAT ring in the shielded region of the magnetic field (Figure 2 A/B, C₂D₂Cl₄) or b) further away from the HAT aromatic to experience reduced anisotropic effects (Figure 2 A/B, CD₂Cl₂). Finally, each CH₂^A group at the rim is the pivoting point about which the alkyl chain revolves: the position of the CH₂^A protons alters to face the inner (CD2Cl2, Figure 2A) or outer side (C₂D₂Cl₄, Figure 2 A) of the host's cavity (Figure 2 B), which is reflected in the chemical shift of these protons (Figure 2A); note that similar spectroscopic changes accompanied compound $\mathbf{1}_{svn}$ (Figure S25) upon the same alteration of solvents.

The revolution of the alkyl groups within 2_{syn} must be fast on the NMR time scale to average the observed proton resonance signals (Figure 2). In fact, the folded state of $\mathbf{2}_{svn}$ is C_3 symmetric with gauche alkyl chains forming right (P) or left-handed (M) stereoisomers and therefore including diastereotopic CH₂A/CH₂B protons (Figure 2B). [35] Variabletemperature NMR study of 2_{svn} in both C₂D₂Cl₄ (298–248 K, Figure S26) and CD₂Cl₂ (298–177 K, Figure S27) did not show any decoalescence but a consistent shift of the alkyl resonance signals: in particular, triplet corresponding to CH₃ moved upfield at higher temperatures. Apparently, a low activation barrier must be characterizing the folded/unfolded dynamic equilibrium (Figure 2C) with the folded state of $\mathbf{2}_{svn}$ being preferred at higher temperatures. We reason that the formation of folded 2_{syn} is, in both solvents, accompanied by a release of solvent molecules ($\Delta S^{\circ} > 0$) for which the equilibrium free energy is more favorable ($\Delta G^{\circ} < 0$) at higher temperatures.

Since the solvation of the inner space of 2_{syn} is a form of molecular recognition^[36] we decided to titrate CH₂Cl₂ to this host in noncompeting C₂D₂Cl₄ and quantify the interaction. As larger quantities of the guest could not saturate 2_{syn} (Figure S28), we tested more sizeable CHCl₃ (75 Å³,) and CCl₄ (89 Å³, Figure S29). The binding affinity improved, but it was still difficult to quantify the interaction with ¹H NMR spectroscopy. Ultimately, we completed an incremental addition of CBr₄ (108 Å³, Figure 3B) to $\mathbf{2}_{svn}$: the nonlinear least-square fitting of the experimental data to a 1:1 stoichiometric model ($R^2 = 0.99$, Figure 3B) gave the association constant of $K_a = 1.77 \pm 0.02 \,\mathrm{M}^{-1}$. [37] Evidently, the formation of the 1:1 complex was accompanied with downfield shift of CH₃ (Figure 3B) resonances, which is in line with the "opening" of the host to accept the guest (Figure 3A). We reasoned that the small binding energy (ΔG°) for the formation of $[\mathbf{2}_{svn}\subset CBr_4]$ is, in part, due to relatively stable ground state of the folded host having its cavity already populated with three alkyl chains. In fact, the affinity of $\mathbf{1}_{syn}$ toward complementary CBr_4 was somewhat greater with K_a = $3.73 \pm 0.02 \,\mathrm{M}^{-1}$ (R² = 0.99, Figure 3B): it costs less energy to displace shorter ethyl groups from the interior of $\mathbf{1}_{syn}$ than


Figure 3. A) Energy-minimized structure of folded and unfolded (MMFFs, Spartan) forms of $\mathbf{2}_{syn}$ trapping CBr₄ guest. B) ¹H NMR spectra (400 MHz, 298.0 K) of $\mathbf{2}_{syn}$ (1.0 mm) in $C_2D_2Cl_4$ obtained upon incremental addition of CBr₄ (0–1.1 m) and the nonlinear least-square analysis of the ¹H NMR chemical shifts of CH₃ (ppm) in $\mathbf{1}_{syn}$ (1.0 mm, red) and $\mathbf{2}_{syn}$ (1.0 mm, black) as a function of CBr₄ concentration (M). A 1:1 stoichiometric model gave association constants K_a (M⁻¹) at 298.0 K.

longer propyl groups in $\mathbf{2}_{syn}$. Furthermore, it could be argued that less polarizable and shorter ethyl groups are forming less favorable contacts with the HAT "floor"; [38] note that changing the nature of bulk solvent might improve the stability of the host–guest complex.

The solid-state structure of $\mathbf{3}_{anti}$ shows a pairwise assembly of these compounds in the unit cell besides multiple and disorganized molecules of CHCl₃ (Figure 4). The distance between the two HAT rings is 3.5 Å (middle region, Figure 4A), with a slipped geometry of such π -stacked aromatics (Figure 4B). [39] Interestingly, two molecules of $\mathbf{3}_{anti}$ face each other with one imide moiety, while the remaining two imide groups point away. The butyl chain of the facing imides (bottom region, Figure 4A) assumes the *anti* conformation about the C_1 – C_2 / C_2 – C_3 bonds: with the aromatic ring populating the space next to $\mathbf{3}_{anti}$, the alkyl chain extends out. In contrast, two alkyl groups on the remaining imides (top region, Figure 4A) are disordered but clearly coiled to fill the space above each HAT ring.

Novel hosts of type $\mathbf{1}_{syn}$ – $\mathbf{2}_{syn}$ comprise a unique topology and also employ an intriguing mode of action in trapping guests. Importantly, the organic framework of these compounds can be modified to give functional molecules and materials with tunable electrochemical or optical characteristics. [40] In particular, we are investigating the functionaliza-

Figure 4. Stick representations of the solid-state structure of $\mathbf{3}_{anti}$ showing the orientation of two molecules within the unit cell. See text for details.

tion of the inner amides as well as an extension of the outer olefins for optimizing the recognition characteristics of molecular claws.

Received: July 3, 2013

Published online: September 2, 2013

Keywords: cavitands · dynamic hosts · molecular encapsulation · NMR spectroscopy · supramolecular chemistry

- [1] a) D. J. Cram, Science 1983, 219, 1177-1183; b) D. J. Cram, Science 1988, 240, 760-767.
- [2] a) Molecular Encapsulation: Organic Reactions in Constrained Systems (Eds.: U. H. Brinker, J.-L. Mieusset), J. Wiley & Sons LTD, Chichester, UK, 2010; b) F. Hof, S. L. Craig, C. Nuckolls, J. Rebek, Jr., Angew. Chem. 2002, 114, 1556–1578; Angew. Chem. Int. Ed. 2002, 41, 1488–1508.
- [3] a) Z. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond, F. D. Toste, *Nat. Chem.* 2013, 5, 100 103; b) *Supramolecular Catalysis* (Ed.: P. W. N. van Leeuwen), Wiley-VCH, Weinheim, 2008.
- [4] Z. Lin, J. Sun, B. Efremovska, R. Warmuth, Chem. Eur. J. 2012, 18, 12864–12872.
- [5] J. Rebek, Acc. Chem. Res. 2009, 42, 1660-1668.
- [6] A. P. Umali, E. V. Anslyn, Curr. Opin. Chem. Biol. 2010, 14, 685–692.
- [7] Y. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga, K. Rissanen, M. Fujita, *Nature* 2013, 495, 461–466.
- [8] J. D. Badjić, S. Stojanović, Y. Ruan, *Adv. Phys. Org. Chem.* **2011**,
- [9] S. R. Beeren, J. K. M. Sanders, Dyn. Comb. Chem. 2010, 1-22.
- [10] D. Ajami, J. Rebek, J. Org. Chem. 2009, 74, 6584-6591.
- [11] F. Fabris, C. Zonta, G. Borsato, O. De Lucchi, Acc. Chem. Res. 2011, 44, 416–423.
- [12] S. Kubik, Top. Curr. Chem. 2012, 319, 1-34.
- [13] a) G. Guichard, I. Huc, Chem. Commun. 2011, 47, 5933-5941;
 b) Y. Zhao, J. S. Moore, Foldamers 2007, 75-108.
- [14] S. H. Gellman, Acc. Chem. Res. 1998, 31, 173-180.
- [15] J. Huang Tony, K. Juluri Bala, Nanomedicine 2008, 3, 107–124.
- [16] C. Fahrenbach Albert, J. Bruns Carson, D. Cao, J. F. Stoddart, Acc. Chem. Res. 2012, 45, 1581 – 1592.
- [17] H.-J. Schneider, Angew. Chem. 2009, 121, 3982-4036; Angew. Chem. Int. Ed. 2009, 48, 3924-3977.

- [18] C. R. Benson, A. I. Share, A. H. Flood, *Bioinspiration Biomimicry Chem.* **2012**, 71 119.
- [19] L. C. Palmer, J. Rebek, Jr., *Org. Biomol. Chem.* **2004**, *2*, 3051 3059.
- [20] S. Rieth, K. Hermann, B.-Y. Wang, J. D. Badjic, Chem. Soc. Rev. 2011, 40, 1609–1622.
- [21] a) J. L. Atwood, L. J. Barbour, A. Jerga, *Proc. Natl. Acad. Sci. USA* 2002, 99, 4837–4841; b) P. Ballester, G. Gil-Ramirez, *Proc. Natl. Acad. Sci. USA* 2009, 106, 10455–10459.
- [22] U. Lücking, F. C. Tucci, D. M. Rudkevich, J. Rebek, Jr., J. Am. Chem. Soc. 2000, 122, 8880–8889.
- [23] I. Pochorovski, M.-O. Ebert, J.-P. Gisselbrecht, C. Boudon, W. B. Schweizer, F. Diederich, J. Am. Chem. Soc. 2012, 134, 14702–14705.
- [24] T. Ishi-i, M. Crego-Calama, P. Timmerman, D. N. Reinhoudt, S. Shinkai, J. Am. Chem. Soc. 2002, 124, 14631 14641.
- [25] S. M. Grayson, J. M. J. Frechet, *Chem. Rev.* **2001**, *101*, 3819–
- [26] D. A. Dixon, J. C. Calabrese, J. S. Miller, Angew. Chem. 1989, 101, 79-81; Angew. Chem. Int. Ed. Engl. 1989, 28, 90-92.
- [27] J. Mahmood, D. Kim, I.-Y. Jeon, M. S. Lah, J.-B. Baek, Synlett 2013, 246–248.
- [28] a) J. J. Wolff, A. Zietsch, B. Nuber, F. Gredel, B. Speiser, M. Wuerde, J. Org. Chem. 2001, 66, 2769–2777; b) R. Juárez, M. M. Oliva, M. Ramos, J. L. Segura, C. Aleman, F. Rodriguez-Ropero, D. Curco, F. Montilla, V. Coropceanu, J. L. Bredas, Y. Qi, A. Kahn, M. C. Ruiz Delgado, J. Casado, J. T. Lopez Navarrete, Chem. Eur. J. 2011, 17, 10312–10322.
- [29] M. J. Wyvratt, L. A. Paquette, Tetrahedron Lett. 1974, 15, 2433 2436.
- [30] L. A. Paquette, Chem. Rev. 1989, 89, 1051-1065.
- [31] R. T. Taylor, M. W. Pelter, L. A. Paquette, *Org. Synth.* **1990**, *68*, 198–205.
- [32] R. Breslow, K. Groves, M. U. Mayer, Pure Appl. Chem. 1998, 70, 1933–1938.
- [33] N. R. Voss, M. Gerstein, Nucleic Acids Res. 2010, 38, W555 W562.
- [34] J. W. Park, S. Y. Lee, H. J. Song, K. K. Park, J. Org. Chem. 2005, 70, 9505–9513.
- [35] A. Scarso, L. Trembleau, J. Rebek, Jr., J. Am. Chem. Soc. 2004, 126, 13512 – 13518.
- [36] A. Shivanyuk, J. Rebek, Chem. Commun. 2002, 2326-2327.
- [37] Frontiers in Supramolecular Organic Chemistry and Photochemistry (Eds.: H. J. Schneider, H. Duerr), Wiley-VCH, Weinheim, 1991.
- [38] a) C. Zhao, R. M. Parrish, M. D. Smith, P. J. Pellechia, C. D. Sherrill, K. D. Shimizu, J. Am. Chem. Soc. 2012, 134, 14306–14309; b) N. J. Zondlo, Acc. Chem. Res. 2013, 46, 1039–1049.
- [39] a) C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525-5534; b) S. E. Wheeler, Acc. Chem. Res. 2013, 46, 1029-1038.
- [40] a) J.-M. Herrera, S. J. A. Pope, A. J. H. M. Meijer, T. L. Easun, H. Adams, W. Z. Alsindi, X.-Z. Sun, M. W. George, S. Faulkner, M. D. Ward, J. Am. Chem. Soc. 2007, 129, 11491-11504; b) S. Furukawa, T. Okubo, S. Masaoka, D. Tanaka, H.-C. Chang, S. Kitagawa, Angew. Chem. 2005, 117, 2760-2764; Angew. Chem. Int. Ed. 2005, 44, 2700-2704; c) D. Hanifi, D. Cao, L. M. Klivansky, Y. Liu, Chem. Commun. 2011, 47, 3454-3456; d) Y. Zhang, D. Hanifi, S. Alvarez, F. Antonio, A. Pun, L. M. Klivansky, A. Hexemer, B. Ma, Y. Liu, Org. Lett. 2011, 13, 6528-6531.